高二期末考试1v1

高二

101教育热线电话
400-6869-101
微信
当前位置: 首页 > 高二> 高二数学> 高二数学答题技巧

高二数学知识点:"充要条件"具体概念

来源:101教育网整理 2019-06-05 字体大小: 分享到:

  高二数学中学到的充要条件是证明题的一种常考类型,需要正反两面推,类似的还有充分条件和必要条件。下面101教育小编为大家准备了充要条件的一些基本内容,希望对大家有帮助。

高二数学知识点:"充要条件"具体概念.png

  “充要条件”是数学中极其重要的一个概念。

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p => q,则我们称p为q的充分条件,q是p的必要条件。这里由p => q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p => q”等价的逆否命题是“非q => 非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p =>q,同时q => p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高二数学知识点:"充要条件"具体概念.jpg

  以上就是本期整理的全部内容了,想要了解更多复习方法和相关知识点,同学们请持续关注101教育。

  广大学生们想要领取高二年级各学科资料,赶快加入101教育高二年级QQ群号:704104680!持续更新学生们最需要的考试资料,学霸笔记哦!

上一篇:高二数学难点高效突破

下一篇:如何避免数学学习枯燥化

高二期末考前辅导
标签: 高二数学 高二学习方法 高二知识点 高二复习方法 (责任编辑:wangliru)

免费领取体验课

姓名
手机号
年级
*图形验证码
获取验证码
免费预约
高二暑期狂补习