巧解难题 学习不停歇

高一

101教育热线电话
400-6869-101
微信
当前位置: 首页 > 高一> 高一数学> 高一数学知识点

高一数学考点:等差数列推论

来源:101教育网整理 2020-05-12 字体大小: 分享到:

  数学是重要的学科之一,也是高考的必考科目,只要我们记住各知识点,学会灵活运用,数学也是很简单的。下面是101小编给大家整理的高一数学考点:等差数列推论,下面就一起来学习吧。

高一数学考点:等差数列推论.gif

  等差数列推论

  (1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  (2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

  (3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。

  证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

  (4)其他推论:

  ①和=(首项+末项)×项数÷2;

  ②项数=(末项-首项)÷公差+1;

  ③首项=2x和÷项数-末项或末项-公差×(项数-1);

  ④末项=2x和÷项数-首项;

  ⑤末项=首项+(项数-1)×公差;

  ⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

  以上就是本次整理的全部内容了,想了解更多知识点请关注101教育

标签: 高一 数学 期末考试 高一期末 (责任编辑: wangliru )
猜你喜欢

资料下载

  • 高考文言文常识

    下载
  • 中国古代史解析

    下载
  • 高考预测密卷

    下载
  • 客观题解题策略

    下载
  • 诗歌鉴赏阅读题

    下载
  • 揭秘定语从句

    下载

春季好课预约

获取验证码
免费预约

精品学习资料

已有人下载

扫描二维码注册领取

精选常考文言文考点,专注提升古文修养,更多学习资料尽在101辅导APP