高中试题
当前位置: 首页 > 高一> 高一数学> 高一数学知识点

高一数学必修知识:高考数学必考知识点归纳

来源:101教育网整理 2021-11-29 字体大小: 分享到:

  高中数学的学习无疑还是具有难度的,不再是将公式定理背熟就可以拿高分,而是必须要具备一定的思维能力和逻辑能力。101教育网整理分享!

  高考数学必考知识点、1、圆柱体:

  表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:

  表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、正方体

  a-边长,S=6a2,V=a3

  4、长方体

  a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱

  S-底面积h-高V=Sh

  6、棱锥

  S-底面积h-高V=Sh/3

  7、棱台

  S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、拟柱体

  S1-上底面积,S2-下底面积,S0-中截面积

  h-高,V=h(S1+S2+4S0)/6

  9、圆柱

  r-底半径,h-高,C—底面周长

  S底—底面积,S侧—侧面积,S表—表面积C=2πr

  S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱

  R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、直圆锥

  r-底半径h-高V=πr^2h/3

  12、圆台

  r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

  13、球

  r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台

  r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体

  R-环体半径D-环体直径r-环体截面半径d-环体截面直径

  V=2π2Rr2=π2Dd2/4

  17、桶状体

  D-桶腹直径d-桶底直径h-桶高

  V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  高考数学必考公式知识点、1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

  x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

  2.函数的周期性问题(记忆三个):

  (1)若f(x)=-f(x+k),则T=2k;

  (2)若f(x)=m/(x+k)(m不为0),则T=2k;

  (3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,

  周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

  3.关于对称问题(无数人搞不懂的问题)总结如下:

  (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

  (2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称

  (3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

  4.函数奇偶性:

  (1)对于属于R上的奇函数有f(0)=0

  (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

  (3)奇偶性作用不大,一般用于选择填空

  5.数列爆强定律:

  1.等差数列中:S奇=na中,例如S 13 =13a 7

  2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

  3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

  4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q

  6.数列的终极利器,特征根方程。(如果看不懂就算了)。

  首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

  7.函数详解补充:

  (1)复合函数奇偶性:内偶则偶,内奇同外

  (2)复合函数单调性:同增异减

  (3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

  8.常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法

  前面减去一个1,后面加一个,再整体加一个2

  9.适用于标准方程(焦点在x轴)爆强公式

  k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo

  注:(xo,yo)均为直线过圆锥曲线所截段的中点。

  10.强烈推荐一个两直线垂直或平行的必杀技

  已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0

  若它们垂直:(充要条件)a1a2+b1b2=0;

  若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)

  注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

  上述就是本次整理的全部内容了,更多精彩内容,尽请关注101教育高考频道!如果你觉得对你有帮助,就分享给你的小伙伴吧!

猜你喜欢

精品学习资料

扫描二维码注册领取

精选常考文言文考点,专注提升古文修养,更多学习资料尽在101辅导APP