高一顶通班课表单收集

高一

101教育热线电话
400-6869-101
当前位置: 首页 > 高一> 高一数学> 高一数学复习

2016数学高一下册直线与圆的位置关系课时练习

来源:101教育网整理 2016-08-24 字体大小: 分享到:

直线是几何学的基本概念,在不同的几何学体系中有着不同的描述。101网小编准备了数学高一下册直线与圆的位置关系课时练习,具体请看以下内容。

一、选择题(每小题3分,共18分)

1.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为(  )

A.±4   B.±2    C.±2   D.±

【解析】选C.直线方程为y-a=x,即x-y+a=0.该直线与圆x2+y2=2相切,所以 = ,所以a=±2.

2.圆x2+y2+4x-2y+4=0上的点到直线y=x-1的最近距离为(  )

A.2    B. -1  C.2 -1  D.1

【解析】选C.圆心(-2,1)到直线y=x-1的距离是d= =2 .

所以圆上的点到直线的最近距离是2 -1.

【变式训练】已知点P为圆x2+y2-2x-2y+1=0上一点,且点P到直线x-y+m=0距离的最小值为 -1,则m的值为(  )

A.-2   B.2   C.±    D.±2

【解题指南】圆上的点到直线的距离的最小值等于圆心到直线的距离减去圆的半径,进而可求出m的值.

【解析】选D.圆x2+y2-2x-2y+1=0化为标准方程为(x-1)2+(y-1)2=1,圆心为(1,1),半径为1,因为圆上的点P到直线x-y+m=0距离的最小值为 -1,所以圆心到直线的距离等于 ,即 = ,解得m=±2.

3.(2014•海淀高一检测)设m>0,则直线 (x+y)+1+m=0与圆x2+y2=m的位置关系为(  )

A.相切     B.相交

C.相切或相离   D.相交或相切

【解析】选C.因为圆心到直线的距离d= ,圆的半径长r= .

所以d-r= - = (m-2 +1)= ( -1)2≥0,

所以直线与圆的位置关系是相切或相离,故选C.

4.(2014•杭州高一检测)平行于直线2x-y+1=0且与圆x2+y2=5相切的直线方程是(  )

A.2x-y+5=0

B.2x-y-5=0

C.2x+y+5=0或2x+y-5=0

D.2x-y+5=0或2x-y-5=0

【解析】选D.设切线方程为2x-y+b=0(b≠1),则 = ,所以b=±5,故选D.

5.(2014•大连高一检测)以点P(-4,3)为圆心的圆与直线2x+y-5=0相离,则圆P的半径r的取值范围是(  )

A.(0,2)     B.(0, )

C.(0,2 )    D.(0,10)

【解析】选C.P到直线的距离d= =2 ,

因为圆与直线相离,所以0

6.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(  )

A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

【解析】选B.因为圆心在直线x+y=0上,排除C,D.

验证当圆心为(1,-1)时,适合题意.

二、填空题(每小题4分,共12分)

7.(2013•山东高考)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短的弦长为________.

【解题指南】过圆内一点的弦,最长的为直径,最短的为垂直于圆心与该点连线的弦.这样圆心到点(3,1)的距离与弦长的一半、半径长构成一个直角三角形.

【解析】半径为r=2,圆心为(2,2),圆心到点(3,1)的距离d= = ,

所求最短弦长为2 =2 .

答案:2

8.(2014•武汉高一检测)已知点M(1,3),自点M向圆x2+y2=1引切线,则切线方程是________.

【解析】当斜率存在时,可以求得方程为4x-3y+5=0;当斜率不存在时,可以求得方程为x=1.

答案:x=1或4x-3y+5=0

【误区警示】本题在求解中常因漏掉直线斜率不存在时的情形而出错.

9.(2014•重庆高考)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=________.

【解题指南】先根据△ABC为等边三角形求出圆心到直线的距离然后求解.

【解析】因为△ABC为等边三角形且半径为2,易知圆心到直线的距离为 .

即点(1,a)到直线ax+y-2=0的距离d= = ,

解得a=4± .

答案:4±

三、解答题(每小题10分,共20分)

10.已知圆C:x2+y2-4x-5=0的弦AB的中点为P(3,1),求直线AB的方程.

【解析】已知圆的方程可化为(x-2)2+y2=9,

可知圆心C的坐标是(2,0),

又知弦AB的中点是P(3,1),

所以kCP= =1,而AB⊥CP,所以kAB=-1.

故直线AB的方程是y-1=-(x-3),

即x+y-4=0.

【一题多解】本题还可用以下方法求解:

方法一:由题意可设所求直线的方程为y-1=k(x-3).

代入圆的方程,得关于x的二次方程:

(1+k2)x2-(6k2-2k+4)x+9k2-6k-4=0,

由根与系数的关系,得x1+x2= =6,

解得k=-1.

所以直线AB的方程为x+y-4=0.

方法二:设A(x1,y1),B(x2,y2),

则有 两式相减,

得(x2+x1-4)(x2-x1)+(y2-y1)(y2+y1)=0.

因为AB的中点坐标为(3,1),

所以x1+x2=6,y1+y2=2.

所以 =-1,即直线AB的斜率为-1,故直线AB的方程为x+y-4=0.

11.(2014•南通高一检测)已知点P(2,0)及☉C:x2+y2-6x+4y+4=0.

(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程.

(2)设过点P的直线与☉C交于A,B两点,当AB=4时,求以线段AB为直径的圆的方程.

【解析】(1)设直线l的斜率为k(k存在),则方程为y-0=k(x-2),

又☉C的圆心为(3,-2),r=3,

由 =1,

解得k=- ,

所以直线l的方程为y=- (x-2),

即3x+4y-6=0,

当k不存在时,l的方程为x=2.

综上知直线l的方程为x=2或3x+4y-6=0.

(2)由弦心距d= = ,

又|CP|= ,

知P为AB的中点,

故以AB为直径的圆的方程为(x-2)2+y2=4.

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的数学高一下册直线与圆的位置关系课时练习,希望大家喜欢。

名师测评 限额免费

  • 刘叶

    高二化学 5.0

    高级教师,2000年毕业于河北师范大学化学系,自毕业以来一直担任班主任及高中化学教学工作,在工作期间,所教班级在高考中多次取得市前三名的好成绩,被评为市级模范教师,市级化学学科带头人等称号。

  • 王明明

    高三数学 5.0

    101学酷名师,9年高中数学教学经验,总结出一套快速提升学习成绩的方法以及答题的技巧。将教学与故事结合,让学生举一反三,上课能听懂,考试不用愁

  • 于长富

    高三语文 5.0

    从教30余年,教学经验丰富。1985年--2000年,山东威海重点中学历史教师;2000--2010北京重点中学;2010--至今崛起中学。教学风格严谨,教学内容实用,使学生受益匪浅。

  • 周于

    高三英语 5.0

    高级教师,被评为市级模范教师,市级英语学科带头人等称号;网络教学6年,有丰富的网络教学经验。教学风格幽默风趣、激情而有耐心,深受各位家长和学生的喜爱,我愿付出我的一切,为孩子们在学习上排忧解难。

  • 龚新明

    高三物理 5.0

    中学一级教师,湖北省黄冈市优秀教师,2006年生物科学专业(师范类)本科毕业,2009年生物学硕士毕业,获理学硕士学位。曾辅导学生参加全国生物竞赛获一等奖。所教多届高三毕业班成绩突出,多次被评为黄冈市优秀教育工作者。

  • 程建辉

    高三化学 5.0

    化学专业硕士,中学一级教师,省示范高中化学名师,多次参加高考阅卷工作,辅导学生参加全国化学竞赛赛,并获得指导老师优秀奖。从教十多年来形成了自己独特完整的化学教学方法,使他们在化学的学习思路和成绩上有很大的提高。

姓名
手机
验证码
获取验证码
您的需求
在线预约
立即申请
新高一赢在起跑线
标签: 高一 数学 (责任编辑:101教育小编)
开学钜惠
10秒填写领取秋季高分规划
姓名
手机号
年级
*图形验证码
获取验证码
提交
作业答疑