初一数学训练营

初一

101教育热线电话
400-6869-101
APP下载
当前位置: 首页 > 初一> 初一数学> 初一数学复习

初中数学勾股定理证明方法讲解

来源:101教育网整理 2016-08-29 字体大小: 分享到:

  

  勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

  “勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a?2;+b?2;=c?2;这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a?2;+b?2;=c?2;。在中国数学史中同样源远流长,是中算的重中之重。《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦。”

  勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。下面我们一起来欣赏其中一些证明方法:

  方法一:赵爽“弦图”

  三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。

初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。

  方法二:刘徽“青朱出入图”

  初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。

  方法三:欧几里得“公理化证明”

  希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。

  初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

  1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。

  方法四:毕达哥拉斯“拼图”

  毕达哥拉斯(公元前572—前497年),古希腊著名的哲学家、数学家、天文学家.

    初中数学勾股定理证明方法讲解

  初中数学勾股定理证明方法讲解

   初中数学勾股定理证明方法讲解

  将4个全等的直角三角形拼成边长为(a+b)的正方形ABCD,使中间留下边长c的一个正方形洞.画出正方形ABCD.移动三角形至图2所示的位置中,于是留下了边长分别为a与b的两个正方形洞.则图1和图2中的白色部分面积必定相等,所以c的平方=a的平方+b的平方

  方法五:达·芬奇的证明

  达·芬奇,意大利人,欧洲文艺复兴时期的著名画家。主要作品《自画像》《岩间圣母》《蒙娜丽莎》等

  初中数学勾股定理证明方法讲解

  图1

  初中数学勾股定理证明方法讲解

  方法六:五巧板“拼图”

  利用两幅五巧板,拼成一个以c为边长的正方形和两个边长分别为a、b的正方形

  初中数学勾股定理证明方法讲解

  方法七:在印度、阿拉伯和欧洲出现的拼图证明

  初中数学勾股定理证明方法讲解

  做法是将一条垂直线和一条水平线,将较大直角边的正方形分成4分。之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。

  方法八:加菲尔德“总统证明法”

  1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。

  

标签: 开方 数学 北京 (责任编辑: 101教育小编 )
猜你喜欢

资料下载

  • 政史地生复习提纲

    下载
  • 文言文考点清单

    下载
  • 初中英语常用词组

    下载
  • 语文总复习基础百题

    下载
  • 中考化学易错归纳

    下载
  • 2020全科模拟试卷

    下载

期末冲刺体验课

获取验证码
免费预约
预约成功!
我们将会以010开头的座机联系您 请注意接听电话。
更多免费好课,请访问https://www.chinaedu.com/ke/

精品学习资料

已有人下载

扫描二维码注册领取

精选常考文言文考点,专注提升古文修养,更多学习资料尽在101辅导APP