寒假班课5折优惠

高一

101教育热线电话
400-6869-101
当前位置: 首页 > 高一> 高一数学> 高一数学知识点

新高一数学必看:指数函数、函数奇偶性

来源:未知 2014-02-13 字体大小: 分享到:

  高中数学的内容多,抽象性、理论性比初中数学强,不少同学,特别是高一年级的学生进入高中学习后,如果还是使用原来的学习方式,不懂得更新学习方法,很可能会不适应高中数学的学习,从而很难掌握高中的数学知识,于是对数学的学习产生厌烦的想法。学好高一数学的确不是易事,高考频道建议新高一生从一个一个的知识点抓起,循序渐进,融会贯通。下面先来学习高一数学指数函数、函数奇偶性的定义域的概念和基本用法。

  指数函数的一般形式为:

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1.定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义 #p#分页标题#e#

  2.奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)→(-x,-y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3.奇偶函数运算

  (1)两个偶函数相加所得的和为偶函数。

  (2)两个奇函数相加所得的和为奇函数。

  (3)一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

  (4)两个偶函数相乘所得的积为偶函数。

  (5)两个奇函数相乘所得的积为偶函数。

  (6)一个偶函数与一个奇函数相乘所得的积为奇函数。

上一篇:学习数学就是学习解题

下一篇:高中数学学习方法1234

高一期末考前辅导
标签: 高一 知识点 数学 学习方法 高一数学 (责任编辑:101教育小编)
高一期末冲刺辅导
10秒填写领取秋季提升规划
姓名
手机号
年级
*图形验证码
获取验证码
提交