寒假班课5折优惠

高一

101教育热线电话
400-6869-101
当前位置: 首页 > 高一> 高一数学> 高一数学知识点

高一数学《平面向量》

来源:101教育网整理 2015-04-16 字体大小: 分享到:
:5.3实数与向量的积综合练习 目的:通过练习使学生对实数与积,两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,并能用来解决一些简单的几何问题。 过程:一、复习:1.实数与向量的积 (强调:“模”与“方向”两点) 2.三个运算定律(结合律,第一分配律,第二分配律) 3.向量共线的充要条件 4.平面向量的基本定理(定理的本身及其实质) 1.当λZ时,验证:λ( + )=λ +λ 证:当λ=0时,左边=0•( + )= 右边=0• +0• = 分配律成立 当λ为正整数时,令λ=n, 则有: n( + )=( + )+( + )+…+( + ) = + +…+ + + + +…+ =n +n 即λ为正整数时,分配律成立 当为负整数时,令λ=n(n为正整数),有 n( + )=n[( + )]=n[( )+( )]=n( )+n( )=n +(n )=n n 分配律仍成立 综上所述,当λ为整数时,λ( + )=λ +λ 恒成立 。 2.如图,在△ABC中, = , = AD为边BC的中线,G为△ABC的重心,求向量 解一:∵ = , = 则 = = ∴ = + = + 而 = ∴ = + 解二:过G作BC的平行线,交AB、AC于E、F ∵△AEF∽△ABC = = = = = = ∴ = + = + 3.在 ABCD中,设对角线 = , = 试用 , 表示 , 解一: = = = = ∴ = + =  =  = + = + = + 解二:设 = , = 则 + = + = ∴ = (  )  =  = = ( + ) 即: = (  ) = ( + ) 4.设 , 是两个不共线向量,已知 =2 +k , = +3 , =2  , 若三点A, B, D共线,求k的值。 解: =  =(2  )( +3 )= 4 ∵A, B, D共线 ∴ , 共线 ∴存在λ使 =λ 即2 +k =λ( 4 ) ∴ ∴k=8 5.如图,已知梯形ABCD中,AB∥CD且AB=2CD,M, N分别是DC, AB中点,设 = , = ,试以 , 为基底表示 , , 解: = = 连ND 则DC╩ND ∴ = =  =  又: = = ∴ =  =  =  =( + ) =  6.1kg的重物在两根细绳的支持下,处于平衡状态(如图),已知两细绳与水平线分别成30, 60角,问两细绳各受到多大的力? 解:将重力在两根细绳方向上分解,两细绳间夹角为90 =1 (kg) P1OP=60 P2OP=30 ∴ = cos60=1• =0.5 (kg) = cos30=1• =0.87 (kg) 即两根细绳上承受的拉力分别为0.5 kg和0.87 kg

上一篇:高一数学《集合与简易逻辑》

下一篇:高一数学《两条直线的交点坐标》

高一期末考前辅导
标签: 充要条件 (责任编辑:101教育小编)
寒假班课5折预售
10秒填写领取秋季提升规划
姓名
手机号
年级
*图形验证码
获取验证码
提交