新用户49元解锁寒假课

高一

101教育热线电话
400-6869-101
当前位置: 首页 > 高一> 高一数学> 高一数学知识点

高一数学知识点总结:指数函数、函数奇偶性

来源:101教育网整理 2015-08-04 字体大小: 分享到:

这篇高一数学知识点总结:指数函数、函数奇偶性是101教育网特地为大家整理的,希望对大家有所帮助!

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

注图:(1)为奇函数(2)为偶函数

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

2.奇偶函数图像的特征:

定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

f(x)为奇函数《==》f(x)的图像关于原点对称

点(x,y)→(-x,-y)

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

3.奇偶函数运算

(1).两个偶函数相加所得的和为偶函数.

(2).两个奇函数相加所得的和为奇函数.

(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.

(4).两个偶函数相乘所得的积为偶函数.

(5).两个奇函数相乘所得的积为偶函数.

(6).一个偶函数与一个奇函数相乘所得的积为奇函数.

以上就是由101教育网为您提供的高一数学知识点总结:指数函数、函数奇偶性,希望给您带来帮助!

上一篇:高一数学知识点指导:集合元素的性质

下一篇:高中高一数学知识点:三角函数公式大全

高一期末考前辅导
标签: 知识点 数学 数学知识点 教育 (责任编辑:101教育小编)
高一期末冲刺辅导
10秒填写领取冬季提升规划
姓名
手机号
年级
*图形验证码
获取验证码
提交