初一课程 夯实基础

初一

101教育热线电话
400-6869-101
APP下载
当前位置: 首页 > 初一> 初一数学> 初一数学试题

吉林市2015七年级数学上学期期中试卷(含答案解析)

来源:101教育网整理 2016-01-12 字体大小: 分享到:
  吉林市2015七年级数学上学期期中试卷(含答案解析)
  一.选择题(共8小题,每题3分)
  1.如果收入80元记作+80元,那么支出20元记作(  )
  A.  +20元  B.  ﹣20元  C.  +100元  D.  ﹣100元
  2.北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为(  )
  A.  54×106  B.  55×106  C.  5.484×107  D.  5.5×107
  3.数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?(  )
  A.     B.     C.     D.
  4.某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克(  )
  A.  (1﹣15%)(1+20%)a元  B.  (1﹣15%)20%a元
  C.  (1+15%)(1﹣20%)a元  D.  (1+20%)15%a元
  5.按如图的运算程序,能使输出结果为3的x,y的值是(  )
  A.  x=5,y=﹣2  B.  x=3,y=﹣3  C.  x=﹣4,y=2  D.  x=﹣3,y=﹣9
  6.已知x2﹣2x﹣3=0,则2x2﹣4x的值为(  )
  A.  ﹣6  B.  6  C.  ﹣2或6  D.  ﹣2或30
  7.下列立体图形中,侧面展开图是扇形的是(  )
  A.     B.     C.     D.
  8.下列图形中,是正方体表面展开图的是(  )
  A.    B.     C.     D.
  二.填空题(共6小题,每题3分)
  9.如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE=      度.
  10.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=      .
  11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=      度.
  12.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为      .
  13. “x的2倍与5的和”用代数式表示为      .
  14.计算:(﹣1)2014=      .
  三.解答题(共11小题)
  15.计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣ ).
  16.计算:(﹣ ﹣ + )÷(﹣ )
  17.已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.
  18.出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:
  (1)小张在送第几位乘客时行车里程最远?
  (2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?
  19.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.
  20.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.
  21.如图,已知OF⊥OC,∠BOC:∠COD:∠DOF=1:2:3,求∠AOC的度数.
  22.∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?
  23.如图,直线AB∥CD,∠A=100°,∠C=75°,则∠E等于      °.
  24.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
  25.将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.
  (1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);
  (2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.



  吉林市2015七年级数学上学期期中试卷(含答案解析)参考答案与试题解析
  一.选择题(共8小题,每题3分)
  1.如果收入80元记作+80元,那么支出20元记作(  )
  A.  +20元  B.  ﹣20元  C.  +100元  D.  ﹣100元
  考点:  正数和负数.
  分析:  在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
  解答:  解:“正”和“负”相对,
  所以如果+80元表示收入80元,
  那么支出20元表示为﹣20元.
  故选:B.
  点评:  此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.
  2.北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为(  )
  A.  54×106  B.  55×106  C.  5.484×107  D.  5.5×107
  考点:  科学记数法与有效数字.
  分析:  科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于54840000有8位,所以可以确定n=8﹣1=7.
  因为54840000的十万位上的数字是8,所以用“五入”法.
  用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
  解答:  解:54840000=5.484×107≈5.5×107.
  故选D.
  点评:  本题考查科学记数法的表示方法以及掌握利用“四舍五入法”,求近似数的方法.
  3.数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?(  )
  A.     B.     C.     D.
  考点:  数轴;绝对值.
  分析:  从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.
  解答:  解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,
  ∴b=1,
  ∵|c﹣1|﹣|a﹣1|=|a﹣c|.
  ∴|c﹣b|﹣|a﹣b|=|a﹣c|.
  A、b<a<c,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正确,
  B、c<b<a则有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|a﹣c|.故错误,
  C、a<c<b,则有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|a﹣c|.故错误.
  D、b<c<a,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|a﹣c|.故错误.
  故选:A.
  点评:  本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.
  4.某养殖场2015年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克(  )
  A.  (1﹣15%)(1+20%)a元  B.  (1﹣15%)20%a元
  C.  (1+15%)(1﹣20%)a元  D.  (1+20%)15%a元
  考点:  列代数式.
  专题:  销售问题.
  分析:  由题意可知:2014年第一季度出栏价格为2015年底的生猪出栏价格的(1﹣15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.
  解答:  解:第三季度初这家养殖场的生猪出栏价格是每千克(1﹣15%)(1+20%)a元.
  故选:A.
  点评:  此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.
  5.按如图的运算程序,能使输出结果为3的x,y的值是(  )
  A.  x=5,y=﹣2  B.  x=3,y=﹣3  C.  x=﹣4,y=2  D.  x=﹣3,y=﹣9
  考点:  代数式求值;二元一次方程的解.
  专题:  计算题.
  分析:  根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.
  解答:  解:由题意得,2x﹣y=3,
  A、x=5时,y=7,故A选项错误;
  B、x=3时,y=3,故B选项错误;
  C、x=﹣4时,y=﹣11,故C选项错误;
  D、x=﹣3时,y=﹣9,故D选项正确.
  故选:D.
  点评:  本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.



  6.已知x2﹣2x﹣3=0,则2x2﹣4x的值为(  )
  A.  ﹣6  B.  6  C.  ﹣2或6  D.  ﹣2或30
  考点:  代数式求值.
  专题:  整体思想.
  分析:  方程两边同时乘以2,再化出2x2﹣4x求值.
  解答:  解:x2﹣2x﹣3=0
  2×(x2﹣2x﹣3)=0
  2×(x2﹣2x)﹣6=0
  2x2﹣4x=6
  故选:B.
  点评:  本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.
  7.下列立体图形中,侧面展开图是扇形的是(  )
  A.     B.     C.     D.
  考点:  几何体的展开图.
  分析:  圆锥的侧面展开图是扇形.
  解答:  解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.
  故选:B.
  点评:  解题时勿忘记圆锥的特征及圆锥展开图的情形.
  8.下列图形中,是正方体表面展开图的是(  )
  A.     B.     C.     D.
  考点:  几何体的展开图.
  分析:  利用正方体及其表面展开图的特点解题.
  解答:  解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.
  点评:  只要有“田”字格的展开图都不是正方体的表面展开图.
  二.填空题(共6小题,每题3分)
  9.如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= 20° 度.
  考点:  对顶角、邻补角;角平分线的定义.
  分析:  由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE即可.
  解答:  解:∵∠AOC=40°,
  ∴∠DOB=∠AOC=40°,
  ∵OE平分∠DOB,
  ∴∠DOE= ∠BOD=20°,
  故答案为:20°.
  点评:  本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.
  10.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= 31° .
  考点:  平行线的性质.
  分析:  根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2= ∠EFD.
  解答:  解:∵AB∥CD,
  ∴∠EFD=∠1=62°,
  ∵FG平分∠EFD,
  ∴∠2= ∠EFD= ×62°=31°.
  故答案为:31°.
  点评:  本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.



  11.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.
  考点:  平行线的性质.
  专题:  计算题.
  分析:  根据平行线的性质求出∠C,根据三角形外角性质求出即可.
  解答:  解:∵AB∥CD,∠1=45°,
  ∴∠C=∠1=45°,
  ∵∠2=35°,
  ∴∠3=∠∠2+∠C=35°+45°=80°,
  故答案为:80.
  点评:  本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.
  12.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 9 .
  考点:  代数式求值.
  专题:  整体思想.
  分析:  把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.
  解答:  解:∵x2﹣2x=5,
  ∴2x2﹣4x﹣1
  =2(x2﹣2x)﹣1,
  =2×5﹣1,
  =10﹣1,
  =9.
  故答案为:9.
  点评:  本题考查了代数式求值,整体思想的利用是解题的关键.
  13.“x的2倍与5的和”用代数式表示为 2x+5 .
  考点:  列代数式.
  分析:  首先表示x的2倍为2x,再表示“与5的和”为2x+5.
  解答:  解:由题意得:2x+5,
  故答案为:2x+5.
  点评:  此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.
  14.计算:(﹣1)2014= 1 .
  考点:  有理数的乘方.
  分析:  根据(﹣1)的偶数次幂等于1解答.
  解答:  解:(﹣1)2014=1.
  故答案为:1.
  点评:  本题考查了有理数的乘方,﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.
  三.解答题(共11小题)
  15.计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣ ).
  考点:  有理数的混合运算.
  分析:  含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.
  解答:  解:原式=4﹣7+3+1=1.
  点评:  注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.
  (2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.



  16.计算:(﹣ ﹣ + )÷(﹣ )
  考点:  有理数的除法.
  分析:  将除法变为乘法,再根据乘法分配律计算即可求解.
  解答:  解:原式=(﹣ ﹣ + )×(﹣36)
  =﹣ ×(﹣36)﹣ ×(﹣36)+ ×(﹣36)
  =27+20﹣21
  =26.
  点评:  此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.
  17.已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.
  考点:  代数式求值.
  专题:  整体思想.
  分析:  把x=1代入代数式求出a、b的关系式,再把x=2代入代数式整理即可得解.
  解答:  解:将x=1代入2ax2+bx=﹣2中,
  得2a+b=﹣2,
  当x=2时,ax2+bx=4a+2b,
  =2(2a+b),
  =2×(﹣2),
  =﹣4.
  点评:  本题考查了代数式求值,整体思想的利用是解题的关键.
  18.出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:
  (1)小张在送第几位乘客时行车里程最远?
  (2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?
  考点:  正数和负数.
  分析:  (1)根据绝对值的性质,可得行车距离,根据绝对值的大小,可得答案;
  (2)根据行车的总路程乘以单位耗油量,可得答案.
  解答:  解:(1)∵|﹣22|>|15|>|﹣13|>|12|>|10|>|6|>|﹣4|,
  ∴小张在送第七位乘客时行车里程最远;
  (2)由题意,得
  (12+|﹣4|+15+|﹣13|+10+6+|﹣22|)×0.1=82×0.1=8.2(升),
  答:这天上午汽车共耗油8.2升.
  点评:  本题考查了正数和负数,利用了绝对值的意义,有理数的乘法.
  19.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.
  考点:  平行线的性质;对顶角、邻补角.
  专题:  计算题.
  分析:  根据平行线的性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠2=180°﹣2∠1,这样就可求出∠2的度数.
  解答:  解:∵AB∥CD,
  ∴∠1=∠AEG.
  ∵EG平分∠AEF,
  ∴∠1=∠GEF,∠AEF=2∠1.
  又∵∠AEF+∠2=180°,
  ∴∠2=180°﹣2∠1=180°﹣80°=100°.
  点评:  两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.
  20.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.
  考点:  对顶角、邻补角;角平分线的定义.
  分析:  根据角平分线的定义可得∠AOF=∠EOF,然后解答即可.
  解答:  解:∵OF平分∠AOE,
  ∴∠AOF=∠EOF,
  ∴∠AOF+∠COF=∠EOF+∠COF=∠COE=90°.
  点评:  本题考查了角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.



  21.如图,已知OF⊥OC,∠BOC:∠COD:∠DOF=1:2:3,求∠AOC的度数.
  考点:  垂线;角的计算.
  分析:  根据垂线的定义,可得∠COF的度数,根据按比例分配,可得∠COD的度数,根据比例的性质,可得∠BOC的度数,根据邻补角的性质,可得答案.
  解答:  解:由垂直的定义,得
  ∠COF=90°,
  按比例分配,得
  ∠COD=90°× =36°.
  ∠BOC:∠COD=1:2,
  即∠BOC:36°=1:2,由比例的性质,得
  ∠BOC=18°,
  由邻补角的性质,得
  ∠AOC=180°﹣∠BOC=180°﹣18°=162°.
  点评:  本题考查了垂线,利用了垂线的定义,按比例分配,邻补角的性质.
  22.∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?
  考点:  垂线;角平分线的定义.
  分析:  根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.
  解答:  解:由AO⊥BO,得∠AOB=90°,
  由角的和差,得∠AOC=∠AOB+∠BOC=150°.
  由OE平分∠AOC,OF平分∠BOC,得∠COE= ∠AOC= ×150°=75°,∠COF= ∠BOC= ×60°=30°.
  由角的和差,得∠EOF=∠COE﹣∠COF=75°﹣30°=45°.
  点评:  本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差.
  23. 如图,直线AB∥CD,∠A=100°,∠C=75°,则∠E等于 25 °.
  考点:  平行线的性质.
  专题:  探究型.
  分析:  先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.
  解答:  解:∵直线AB∥CD,∠A=100°,
  ∴∠EFD=∠A=100°,
  ∵∠EFD是△CEF的外角,
  ∴∠E=∠EFD﹣∠C=100°﹣75°=25°.
  故答案为:25.
  点评:  本题考查的是平行线的性质,即两直线平行,同位角相等.
  24.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
  考点:  平行线的性质;角平分线的定义;对顶角、邻补角.
  专题:  计算题.
  分析:  根据角平分线的定义,两直线平行内错角相等的性质解答即可.
  解答:  解:∵∠EMB=50°,
  ∴∠BMF=180°﹣∠EMB=130°.
  ∵MG平分∠BMF,
  ∴∠BMG= ∠BMF=65°,
  ∵AB∥CD,
  ∴∠1=∠BMG=65°.
  点评:  主要考查了角平分线的定义及平行线的性质,比较简单.
  25.将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.
  (1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);
  (2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.
  考点:  平行线的判定与性质;角的计算.
  分析:  (1)①当∠AOC=45°时,根据条件可求得∠COB=45°可说明CO平分∠AOB;②设CD、OB交于点E,则可知OE=CE,可证得OB⊥CD,结合条件可证明OA∥CD;
  (2)由平行可得到∠D=∠BOD=45°,则可得到∠AOD=45°,可得到结论.
  解答:  解:(1)①∵∠AOB=90°,∠AOC=45°,
  ∴∠COB=90°﹣45°=45°,
  ∴∠AOC=∠COB,
  即OC平分∠AOB;
  ②如图,设CD、OB交于点E,
  ∵∠C=45°,
  ∴∠C=∠COB,
  ∴∠CEO=90°,
  ∵∠AOB=90°,
  ∴∠AOB+∠OEC=180°,
  ∴AO∥CD;
  (2)∠AOC=45°,理由如下:
  ∵CD∥OB,
  ∴∠DOB=∠D=45°,
  ∴∠AOD=90°﹣∠DOB=45°,
  ∴∠AOC=90°﹣∠AOD=45°.
  点评:  本题主要考查平行线的判定和性质,掌握平行线的判定方法和性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补.

上一篇:南通初一期中上册数学试卷(含答案解析)

下一篇:初一数学下册(人教版)试题

精品课程推荐

更多精品课程
初一英语
高分英语,就这几招

初一英语

高分英语,就这几招

初一生物
植物细胞和动物细胞

初一生物

植物细胞和动物细胞

初一数学
数轴与相反数重点精讲

初一数学

数轴与相反数重点精讲

标签: 七年级 答案解析 乘方 代数式 (责任编辑: 101教育小编 )
猜你喜欢

资料下载

各地中考信息汇总

春季优选体验课

获取验证码
免费预约
预约成功!
我们将会以010开头的座机联系您 请注意接听电话。
更多免费好课,请访问https://www.chinaedu.com/ke/

精品学习资料

已有人下载

扫描二维码注册领取

精选常考文言文考点,专注提升古文修养,更多学习资料尽在101辅导APP