高中试题
当前位置: 首页 > 高二> 高二数学> 高二数学答题技巧

高二数学立体几何学习方法与技巧 为高考打好基础

来源:101教育网整理 2017-06-27 字体大小: 分享到:

  一、逐渐加强逻辑论证能力
  论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
  二、立足课本,夯实基础
  直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
  (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
  (2)培养空间想象力。
  (3)得出一些解题方面的启示。
  在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助加强空间想象力。对后面的学习也打下了很好的基础。
  三、“转化”思想的应用
  我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。

  相关推荐:

  高二数学复习:高中数学重难点之立体几何

  高二数学知识点:立体几何

  如何学好高中立体几何

猜你喜欢

精品学习资料

扫描二维码注册领取

精选常考文言文考点,专注提升古文修养,更多学习资料尽在101辅导APP