寒假班课5折优惠

高二

101教育热线电话
400-6869-101
当前位置: 首页 > 高二> 高二数学> 高二数学知识点

高二数学椭圆题及解析

来源:101教育网整理 2017-12-25 字体大小: 分享到:

  高二数学椭圆题及解析

  第一部分:基础知识梳理

  知识点一椭圆的定义

  平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

  根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。

  当即时,集合P为椭圆。

  当即时,集合P为线段。

  当即时,集合P为空集。

  知识点二椭圆的标准方程

  (1),焦点在轴上时,焦点为,焦点。

  (2),焦点在轴上时,焦点为,焦点。

  知识点三椭圆方程的一般式

  这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:

  (其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。方程可变形为。

  当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

  一般式,通常也设为,应特别注意均大于0,标准方程为。

  知识点四椭圆标准方程的求法

  1.定义法

  椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。

  例1、在△ABC中,A、B、C所对三边分别为,且B(-1,0)C(1,0),求满足,且成等差数列时,顶点A的曲线方程。

  变式练习1.在△ABC中,点B(-6,0)、C(0,8),且成等差数列。

  (1)求证:顶点A在一个椭圆上运动。

  (2)指出这个椭圆的焦点坐标以及焦距。

  2.待定系数法

  首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程。

  例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

  例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

  变式练习2.求适合下列条件的椭圆的方程;

  (1)两个焦点分别是(-3,0),(3,0)且经过点(5,0).

  (2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.

  3.已知椭圆经过点和点,求椭圆的标准方程。

  4.求中心在原点,焦点在坐标轴上,且经过两点的椭圆标准方程。

  知识点五共焦点的椭圆方程的求解

  一般地,与椭圆共焦点的椭圆可设其方程为。

  例4、过点(-3,2)且与有相同焦点的椭圆的方程为()

  A.B.C.D.

  变式练习5.求经过点(2,-3)且椭圆有共同焦点的椭圆方程。

  知识点六与椭圆有关的轨迹问题的求解方法

  与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点和已知曲线上一点,建立其关系,再代入。

  例5、已知圆,从这个圆上任意一点向轴作垂线段,点在上,并且,求点的轨迹。

  知识点七与弦的中点有关问题的求解方法

  直线与椭圆相交于两点、,称线段为椭圆的相交弦。与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特点是巧代线段的斜率。其方程具体是:设直线与椭圆相交于两点,坐标分别为、,线段的中点为,则有

  ①式-②式,得,即

  ∴

  通常将此方程用于求弦中点的轨迹方程。

  例6.已知:椭圆,求:

  (1)以P(2,-1)为中点的弦所在直线的方程;

  (2)斜率为2的相交弦中点的轨迹方程;

  (3)过Q(8,2)的直线被椭圆截得的弦中点的轨迹方程。

  第二部分:巩固练习

  1.设为椭圆的焦点,P为椭圆上一点,则的周长是()

  A.16B.8C.D.无法确定

  2.椭圆的两个焦点之间的距离为()

  A.12B.4C.3D.2

  3.椭圆的一个焦点是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知椭圆的焦点是,P是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是()

  A.圆B.椭圆C.双曲线的一支D.抛物线

  5.已知椭圆的焦点在轴上,则的取值范围是__________.

  6.椭圆的焦点坐标是___________.

  7.椭圆的焦距为2,则正数的值____________.

上一篇:高二数学概率知识点汇总

下一篇:高二数学椭圆标准方程

高二期末考前辅导
标签: 高二 数学 (责任编辑:米露)
高二期末冲刺辅导
10秒填写领取秋季提升规划
姓名
手机号
年级
*图形验证码
获取验证码
提交