初中数学知识点

101教育免费电话
400-6869-101
购满课时 返利不含糊
当前位置:知识点库 > 初中知识点 > 初中数学知识点> 三角形

三角形

来源:101教育网整理 2018-08-07 字体大小: 分享到:


· 初中三角形知识点

  一、三角形的有关概念

  1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

  三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

  2.三角形中的三条重要线段:角平分线、中线、高

  (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  说明:①三角形的角平分线、中线、高都是线段;

  ②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

  二、三角形的边和角

  三边关系:三角形中任意两边之和大于第三边。

  由三边关系可以推出:三角形任意两边之差小于第三边。

  三、三角形内、外角的关系

  1.三角形的内角和等于180°。

  2.直角三角形的两个锐角互余。

  3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

  4.三角形的外角和为360°。

  四、等腰三角形与直角三角形

  1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

  说明:等边三角形是等腰三角形的特殊情况。

  2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

  五、三角形的分类:

三角形.jpg

  六、三角形的面积:

QQ截图20180813095341.jpg

  1.一般计算公式;

  2.性质:等底等高的三角形面积相等。

  七、初中三角形中线定理_

  中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。

  定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

  中线的定义

  任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点

  由定义可知,三角形的中线是一条线段。

  由于三角形有三条边,所以一个三角形有三条中线。

  且三条中线交于一点。这点称为三角形的重心。

  每条三角形中线分得的两个三角形面积相等。

  八、三角形的内角和

  在同一平面内,由一些不在同一条直线上的线段首位顺次相接所围成的封闭图形叫做多边形.组成多变形的那些线段叫做多边形的边.相邻两边的公共端点叫做多边形的顶点.多变形相邻两边所夹的角叫做多边形的内角,简称多边形的角.多变形的角的一边与另一边的反向延长线组成的角叫做多边形的外角.

  三角形内角和定理:三角形三个内角和等于180

  在原来图形上添画的线叫做辅助线

  依据三角形内角的特征,对三角形进行分类:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形;锐角三角形和钝角三角形统称斜三角形.

  在直角三角形中,夹直角的两边叫做直角边,直角的对边叫做斜边.

  九、三角形公式

  解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有

  (1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径)

  (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。

  (3)余弦定理变形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab

  斜三角形的解法: 已知条件 定理应用 一般解法 一边和两角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时 有一解。 两边和夹角 (如a、b、c) 余弦定理 由余弦定理求第三边c,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。

  三边 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C边,可有两解、一解或无解。

  勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。 几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC² 勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形 几何语言:若△ABC满足,则∠ABC=90°。

  射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。

  几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD²=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC, (1)AB²=BD·BC (2)AC²;=CD·BC (3)ABXAC=BCXAD

  正弦定理内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比 几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)

  余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc忽略构成三角形的条件。

常见考法

  (1)考查三角形的性质和概念;(2)根据三角形内角和以及内、外角关系,给出已知两角,来求第三个角;(3)根据三角形内、外角的关系,比较两角大小的;(4)利用三边关系判断三条线段能否组成三角形或给出三角形的两边长,来确定第三边长的取值范围,亦或证明线段之间的不等关系。


· 初中三角形典型例题

题目

  【典型例题】(2010年山西)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为 ( )

  A.1个 B.2个 C.3个 D.4个

答案

  【解析】选4cm,6cm,8cm可以组成1个,选6cm,8cm,10cm 可以组成1个,选 4cm,8cm,10cm又可以组成1个,所以能组成的三角形个数为3个,故本题选C

  在△ABC中,AB=AC,AB=13,BC=10,BD⊥AC与D

  (1)求sinC的值

  (2)求sin角CBD的值

  解析过程:

  QQ截图20180813100428.jpg

上一篇:相交线与平行线

下一篇:圆

特别说明:

1.由于各方面情况的不断调整与变化,101教育所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

2.101教育(chinaedu.com)上的部分资料为作者提供和网友推荐收集整理而来,仅供学习和研究使用。如有侵犯版权,请来信指出,本站将立即改正,客服邮箱:service@chinaedu.com

3.如果您发现本站文章,未经版权人同意而发布或转载,可提供相关线索,经核实确认,将给予您一定的奖励。