高中数学知识点

101教育免费电话
400-6869-101
1v1期中备考
当前位置:知识点库 > 高中知识点 > 高中数学知识点> 高中数学导数知识点

高中数学导数知识点

来源:101教育网整理 2018-08-07 字体大小: 分享到:
高三个性化提分


· 高二数学导数知识点


  导数作为研究函数的重要工具,也是进一步学习高二数学的基础,因此同学们需要掌握导数的重要知识点。下面101教育小编带来高二数学导数知识点,欢迎阅读!

  导数的定义:如果 函数f(x)在(a,b)中每一点处都 可导,则称f(x)在(a,b)上可导,则可建立f(x)的 导函数,简称导数。

  高二数学导数的性质及运算法则

  1. 求函数的单调性:

  利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导, (1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数; (2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数; (3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

  利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x); ③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

  反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围): 设函数yf(x)在区间(a,b)内可导,

  (1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (2) 如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

  (3) 如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

  2. 求函数的极值:

  设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

  可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

  (1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

  (4)检查f(x)的符号并由表格判断极值。

  3. 求函数的最大值与最小值:

  如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

  求函数f(x)在区间[a,b]上的最大值和最小值的步骤: (1)求f(x)在区间(a,b)上的极值;

  (2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

  4. 解决不等式的有关问题:

  (1)不等式恒成立问题(绝对不等式问题)可考虑值域。

  f(x)(xA)的值域是[a,b]时,

  不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)时,

  不等式f(x)0恒成立的充要条件是b0; 不等式f(x)0恒成立的充要条件是a0。

  (2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

  5. 导数在实际生活中的应用:

  实际生活求解最大(小)值问题,通常都可转化为函数的最值. 在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。


上一篇:高中数学平面向量知识点

下一篇:算式和等式的区别

特别说明:

1.由于各方面情况的不断调整与变化,101教育所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

2.101教育(chinaedu.com)上的部分资料为作者提供和网友推荐收集整理而来,仅供学习和研究使用。如有侵犯版权,请来信指出,本站将立即改正,客服邮箱:service@chinaedu.com

3.如果您发现本站文章,未经版权人同意而发布或转载,可提供相关线索,经核实确认,将给予您一定的奖励。